3.295 \(\int \frac{x}{\sqrt{1-a^2 x^2} \cosh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=28 \[ \frac{\sqrt{a x-1} \text{Chi}\left (\cosh ^{-1}(a x)\right )}{a^2 \sqrt{1-a x}} \]

[Out]

(Sqrt[-1 + a*x]*CoshIntegral[ArcCosh[a*x]])/(a^2*Sqrt[1 - a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.300595, antiderivative size = 41, normalized size of antiderivative = 1.46, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {5798, 5781, 3301} \[ \frac{\sqrt{a x-1} \sqrt{a x+1} \text{Chi}\left (\cosh ^{-1}(a x)\right )}{a^2 \sqrt{1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]),x]

[Out]

(Sqrt[-1 + a*x]*Sqrt[1 + a*x]*CoshIntegral[ArcCosh[a*x]])/(a^2*Sqrt[1 - a^2*x^2])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{1-a^2 x^2} \cosh ^{-1}(a x)} \, dx &=\frac{\left (\sqrt{-1+a x} \sqrt{1+a x}\right ) \int \frac{x}{\sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)} \, dx}{\sqrt{1-a^2 x^2}}\\ &=\frac{\left (\sqrt{-1+a x} \sqrt{1+a x}\right ) \operatorname{Subst}\left (\int \frac{\cosh (x)}{x} \, dx,x,\cosh ^{-1}(a x)\right )}{a^2 \sqrt{1-a^2 x^2}}\\ &=\frac{\sqrt{-1+a x} \sqrt{1+a x} \text{Chi}\left (\cosh ^{-1}(a x)\right )}{a^2 \sqrt{1-a^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0796933, size = 50, normalized size = 1.79 \[ -\frac{\sqrt{-(a x-1) (a x+1)} \text{Chi}\left (\cosh ^{-1}(a x)\right )}{a^2 \sqrt{\frac{a x-1}{a x+1}} (a x+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]),x]

[Out]

-((Sqrt[-((-1 + a*x)*(1 + a*x))]*CoshIntegral[ArcCosh[a*x]])/(a^2*Sqrt[(-1 + a*x)/(1 + a*x)]*(1 + a*x)))

________________________________________________________________________________________

Maple [B]  time = 0.132, size = 100, normalized size = 3.6 \begin{align*}{\frac{{\it Ei} \left ( 1,{\rm arccosh} \left (ax\right ) \right ) }{2\,{a}^{2} \left ({a}^{2}{x}^{2}-1 \right ) }\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{ax-1}\sqrt{ax+1}}+{\frac{{\it Ei} \left ( 1,-{\rm arccosh} \left (ax\right ) \right ) }{2\,{a}^{2} \left ({a}^{2}{x}^{2}-1 \right ) }\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{ax-1}\sqrt{ax+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x)

[Out]

1/2*(-a^2*x^2+1)^(1/2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^2/(a^2*x^2-1)*Ei(1,arccosh(a*x))+1/2*(-a^2*x^2+1)^(1/2)*(
a*x-1)^(1/2)*(a*x+1)^(1/2)/a^2/(a^2*x^2-1)*Ei(1,-arccosh(a*x))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{-a^{2} x^{2} + 1} \operatorname{arcosh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(-a^2*x^2 + 1)*arccosh(a*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-a^{2} x^{2} + 1} x}{{\left (a^{2} x^{2} - 1\right )} \operatorname{arcosh}\left (a x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*x^2 + 1)*x/((a^2*x^2 - 1)*arccosh(a*x)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \operatorname{acosh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/acosh(a*x)/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x/(sqrt(-(a*x - 1)*(a*x + 1))*acosh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{-a^{2} x^{2} + 1} \operatorname{arcosh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(-a^2*x^2 + 1)*arccosh(a*x)), x)